450=4.9t^2

Simple and best practice solution for 450=4.9t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 450=4.9t^2 equation:



450=4.9t^2
We move all terms to the left:
450-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+450=0
a = -4.9; b = 0; c = +450;
Δ = b2-4ac
Δ = 02-4·(-4.9)·450
Δ = 8820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8820}=\sqrt{1764*5}=\sqrt{1764}*\sqrt{5}=42\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{5}}{2*-4.9}=\frac{0-42\sqrt{5}}{-9.8} =-\frac{42\sqrt{5}}{-9.8} =-\frac{14\sqrt{5}}{-3.26666666667} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{5}}{2*-4.9}=\frac{0+42\sqrt{5}}{-9.8} =\frac{42\sqrt{5}}{-9.8} =\frac{14\sqrt{5}}{-3.26666666667} $

See similar equations:

| 20x+60=10x | | .5x+25=18.5 | | 2x-16+3x+36=180 | | 9x-4=60 | | 4(x-8=-4x+10 | | Y/7+5/7=y/4-5/7 | | 2(9x-5)=3(6x+12)+4x | | -2x-18+2=-6 | | .5x=25=18.5 | | 3x+5+4x-7=54 | | -2x-18+2=-2 | | 8(8-6k)-k=-k-32 | | 7/(4/11x)=56/3.2 | | 4(y+4)=-23 | | (20/4)*x=55 | | 34-4a=2(a+3)-2a | | -3(x+2)=10-x | | 8-17=-7c+4 | | 20/4*x=55 | | 4x^=1 | | 0.1(18.5+1.5y)+0.7y=-5.8 | | 8x+36=44 | | -2(p+5)=p+5 | | -2x+5x-3=-10x-31 | | 11x+1=-1x+x | | -6(7x-6)=-4-2x | | 7/8*a=42 | | x=500(1.03)x | | 3(2r-14)-3r=14(r-4) | | 1/3q=9-2/5q | | 3(x+2)=6-3x | | 29-3x=7(-3-4x) |

Equations solver categories